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OVERSHOOTING IN STARS: FIVE OLD FALLACIES AND A NEW MODEL
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ABSTRACT

First, I discuss five fallacies of previous theoretical attempts to quantify overshooting in stars. I then suggest
that the only reliable procedure is to solve the five dynamic equations for convective flux, kinetic and potential
energy, turbulent pressure and dissipation rate of kinetic energy, plus the mean temperature equation. Finally, I
discuss a recent solution of the new model that agrees with the latest helioseismological OV data and suggest
that the same data be used to check the validity of the Schwarzschild criterion.

Subject headings: convection — stars: kinematics — turbulence

1. THE PROBLEM

Overshooting (OV) is a physical process that occurs in stars
when heat is transported by convection. Unlike laboratory ex-
periments, in stars there are no rigid walls, and when buoyancy
forces vanish, the eddy acceleration vanishes but not the ve-
locity which allows the eddies to “overshoot” into the adjacent
radiative regions. In massive stars with a large convective core,
the OV phenomenon acquires great relevance because it brings
material with bigger mean molecular weight m from the core
into regions of lower m. This affects the luminosity whichL
depends sensitively on m, . In turn, this affects the4 7.5L ∼ m –m
position of the star in the H-R diagram and, ultimately, age
determinations. The OV problem can be stated as follows: the-
oretical determinations of the OV extent are 5–20 times larger
than what is required by observations. Specifically, early and
recent determinations based on stellar structure calibrations
yield an OV extent that is a small fraction of the pressure scale
height ; specifically, (Prather & Demarque 1974;1H OV ≤ Hp p5

Andersen, Nordstrom, & Clausen 1990; Stothers & Chin 1991;
Schaller et al. 1992; Nordstrom, Andersen, & Andersen 1997;
Kozhurina-Platais et al. 1997). In the solar case, Basu, Antia,
& Narashima (1994) obtained , while Roxburgh1OV 5 Hp10

& Vorontsov (1994) derived . The most recent anal-1OV 5 Hp4

ysis yields (Basu 1997). On the other hand, the-1OV 5 Hp20

oretical determinations based on both modeling of turbulent
convection (e.g., Xiong, Cheng, & Deng 1997; Roxburgh 1978)
and direct numerical simulations (e.g., Singh, Roxburgh, &
Chan 1995) yield large values for the OV, specifically, OV ∼

. Thus, there is a large discrepancy between theory andHp

observations. In this Letter, we discuss three issues: first, we
analyze five fallacies of past modeling of convection, second,
we suggest a new model, and, third, we discuss a specific result
for the Sun. We must stress that turbulence modeling is the
only usable procedure since the alternative, numerical simu-
lations, because of their computational requirements, cannot be
linked to a stellar structure/evolution code.

2. THE BASIC EQUATIONS

Determining the extent of the OV (Fig. 1) is equivalent to

determining the behavior of the convective flux in the -F zc

direction. (Since the extent of the OV is small compared to
the overall convective zone, we use a one-dimensional model.)
In the OV region, is negative and vanishes at point C. TheFc

distance CB is the OV extent. If we call and v the fluctuatingw
velocity and temperature fields, the convective flux is defined
as , where is the specific heat at constant pres-F 5 c rwv cc p p

sure, r is the density, and the overbar means an ensemble
average. Consider the function . Since it entails andJ 5 wv w
v, one may suspect that one must also know and (kinetic2 2w v
and potential energy) and, thus, one needs three dynamic equa-
tions for , , and . In fact, if we consider the first terms2 2J w v
in the velocity and temperature equations

­w ­p
5 gav 2 1 ..., (1a)

­t ­z
2­v ­ v

5 2wb 1 x 1 ..., (1b)2­t ­z

where is the superadiabatic gradient, x is21b 5 TH (∇ 2 ∇ )p ad

the radiative conductivity, and is the local gravity, we seeg
that to construct the equation for , one multiplies equationJ
(1a) by v, equation (1b) by , averages and sums the twow
expressions. This brings in and for which one must2 2w v
construct the corresponding dynamic equations from equations
(1a)–(1b). Actually, one needs more than three equations. The
pressure gradient (the fluctuating pressure does not obey thep
hydrostatic equilibrium equation) gives rise to the terms

and which must be expressed in terms of thew­p/­z v­p/­z
second-order moments (closure). In fact, they may be viewed
as third-order moments since is already a second-order2p ∼ w
moment. Velocity third-order moments exchange energy among
eddies of different sizes, whereas pressure forces tend to iso-
tropize the components , , and of an eddy of a given22 2u v w
size (Batchelor 1971). As a dynamical process, occursw­p/­z
on the dynamical time scale tpv, while occurs on a timev­p/­z
scale . The other time scales are t and , governing the ratet tpv v

of dissipation of kinetic and potential energy. For the derivation
of the dynamic equations see Canuto (1992) and Canuto &
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Fig. 1.—Sketch of the convective flux and superadiabatic temperatureFc

gradient b below a convective zone (CZ): goes to zero earlier thanb(r)
, which remains positive in the region AB as the result of a surplus ofF (r)c

potential energy. In the AB region, the flux is positive in spite ofF ∇ 2c

, in contradiction to the Schwarzschild criterion.∇ ! 0ad

Dubovikov (1996, 1997a, 1998). The results are

­K
1 D (K) 5 gaJ 2 e, (2a)f

­t

2­ 1 1 1 ­2 2 21 2 2v 1 D v 5 bJ 2 t v 1 x v , (2b)f v( ) ( ) 2­t 2 2 2 ­z

2­ 2 1 ­ J2 2 21J 1 D (J) 5 bw 1 gav 2 t J 1 x , (2c)f pv 2­t 3 2 ­z

­ 1 1 22 2 21 2w 1 D w 5 2t w 2 Kf p v( ) ( ) ( )­t 2 2 3

1 1
( )1 1 1 2b gaJ 2 e, (2d)53 3

2­e e e
1 D (e) 5 c gaJ 2 c . (2e)f 1 2

­t K K

Here represents the diffusion of L, e.g.,D (L) D (K) 5f f

, where is the flux of turbulent kinetic energy­F /­z F 5 Kwke ke

K; , , and are numerical constants, and for a21c c b a { T1 2 5

perfect gas. The relation of , , and to is fullyt t t t { 2K/epv p vv

discussed in the above references. In addition, one has the
equation for the mean temperature ( is the radiative flux)Fr

­T ­K ­ 1
c 1 5 2 (F 1 F 1 F ) . (2f)p r c ke[ ]­t ­t ­z r

This gives a total of six differential equations. The solution
yields and, thus, the extent of the OV region whereJ(r) J !

. Given these general arguments, it is hard to conceive that0
one could reduce equations (2a)–(2f) to a single “criterion,”
the solution of which yields the OV.

3. FIRST FALLACY: “ONE-EQUATION” OV CRITERION

The prototype “one-equation” model is the expression (Rox-

burgh 1978)

r2
­T

22T (L 2 L )dr 5 0. (3a)E N r( )F F­rr ad1

Here and are the nuclear and radiative luminosities, andL LN r

and are the beginning and end points of the CZ 1 OVr r1 2

regions. Since in the OV region , while in the CZL 2 L ! 0N r

proper , the integrand changes sign at, say, andL 2 L 1 0 rN r ∗
the distance is the OV extent. Can one use equationr 2 r2 ∗
(3a) or, alternatively, under what conditions does equation (3a)
hold true? Consider equations (2a) and (2f). If one eliminates
J between the stationary versions of equations (2a) and (2f),
the result is a differential equation for which can be inte-Fke

grated analytically. Introducing spherical coordinates and the
luminosities , one derives24pr F 5 L

r2
­T

22T (L 2 L )F(r)drE N r( )F F­rr ad1

r2

2 215 4pr T re(r)F(r)dr, (3b)E
r1

where

21ln F(r) 5 2 T b(r)dr. (3c)E
Relation (3b) is exact but useless unless we know ande(r)

. To know , we must solve equation (2e), which entailsb(r) e(r)
K, which requires that we solve equation (2a), which entails
J, etc. In deriving equations (3b) and (3c) we have done algebra,
not physics. We may have gained an insight into what it takes
to quantify the OV, but we have not gained any operational
advantage over equations (2a)–(2f). However, if one assumes
that

e(r) 5 0, b(r) 5 0, (3d)

equation (3b) reduces to equation (3a), which is operationally
deterministic. The question then arises: is equation (3d) correct?
Even though sometimes approximations that are individually
incorrect cancel each other, rendering them more palatable, at
least at the pragmatic level, this is not the case here: both
assumptions in equation (3d) lead one to overestimate the OV;
their effects do not cancel, instead they add up. To see this,
we divide the interval into and , wherer 2 r r 2 r r 2 r2 1 ∗ 1 2 ∗

has been defined above. After some steps we haver∗

∗r
g

22T d L 2 L d F (r)drE N r 1cr p1

r2
g

225 T d L 2 L d F (r)dr 1 D, (4a)E N r 2cr p∗

where D represents the dissipation term in the right-hand side
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of equation (3b). Moreover,

21F 5 exp$2 T d b(r) d dr& ≈ 1,1 E
21F 5 exp$ T d b(r) d dr& 1 1. (4b)2 E

If we take , the right-hand side of equation (4a) wille(r) 5 0
be deprived of the positive contribution D. Thus, to balance
the left-hand side, one is forced to take a large upper limit ,r2

overestimating the OV. Next, consider . Sinceb(r) 5 0 F 12

, the integrand in the right-hand side is larger than it would1
be with , while the integrand on the left-hand side isF 5 12

smaller than it would be with . Thus, does notF 5 1 F (11 2

require an as large as in the case, which, once again,r F 5 12 2

leads to overestimate the OV. In conclusion, both assumptions
in equation (3d) lead one to overestimate the OV, and equation
(3a) can at best give the upper limit to the OV extent.

4. SECOND FALLACY: Fc 5 0 CORRESPONDS TO ∇2∇d 5 0 (THE
SCHWARZSCHILD CRITERION)

Consider Figure 1 where at A, vanishes and the CZ isb(r)
to the right of A. The region to the left of B, where isFc

negative, is the OV region proper. The region AB is charac-
terized by and yet . The physics is clear if web(r) ! 0 F 1 0c

take the stationary limit of equation (2c) and neglect x for the
moment. Simple algebra gives (P 5 potential energy),

J 5 x b, (5a)t

1
21 2x ∼ t K[1 1 sgn(b)P/K], P { ga d b d v , (5b)t pv 2

where is a turbulent diffusivity. In the AB region, ,x b ! 0t

and the sign of depends on the ratio . Even whenx P/K b !t

, can still be positive if . This is indeed what happens0 F P 1 Kc

in the AB region: the fluctuations are large, and they act2v
as a countergradient and contribute to the convective flux more
than the kinetic energy. This means that the convective flux
does not vanish when , as required by the∇ 2 ∇ 5 0ad

Schwarzschild criterion. It would be interesting to know if
helioseismic data exhibit the region AB (which could be as
much as ∼20% of the OV region) which does not satisfy the
Schwarzschild criterion (Canuto & Christensen-Dalsgaard
1998).

5. THIRD FALLACY: b(r) 5 0 IN THE OV REGION

Since in the region around A convection is still efficient,
equations (2a) and (2b) may be taken as

­K
5 gaJ 2 e, (5c)

­t

­ 1 2 21 2v 5 (b(r)J 2 t v . (5d)v( )­t 2

Suppose that at , we begin with but no po-t 5 0 K(t 5 0)(0
tential energy, . Since the latter must grow, equa-2v (t 5 0) 5 0
tion (5d) tells us that the necessary condition is . Con-b(r)(0
versely, if at we begin with potential energy (densityt 5 0
fluctuations since rather than kinetic energy, the latterv ∼ dr/r)

must increase, which implies . Thus, no matter whetherJ 1 0
we begin with velocity or density fluctuations, J fluctuates in
time between positive and negative values with the Brunt-Vais-
ala frequency . This phenomenon has been1/2N 5 [ga d b(r) d]
confirmed by detailed numerical simulations (Gerz, Schumann,
& Elghobashi 1989), and it occurs only if . Stationarityb(r)(0
is achieved when the diffusion terms, acting like a source,
become important to the left of B.

6. FOURTH FALLACY: e(r) 5 0 IN THE OV REGION (ENERGY
CONSERVATION)

Since the dissipation of a velocity field can occur only via
kinematic viscosity, represents the rate of dissipation of K bye
viscous forces and is defined as

2­ui 2e 5 2n 5 2nQ 5 2n k E(k)dk, (6)E( )­xi

where Q is the enstrophy (q is the vorticity) and22Q 5 q
is the eddy energy spectrum. Since in stellar interiors nE(k)

is 10 orders of magnitude smaller than the radiative conduc-
tivity x, it is often implied that one can neglect since n ise
small. This is not so. The argument is as follows: the nonlinear
interactions conserve energy, which means that the energy at
the largest scales must be dissipated in its entirety by viscous
forces. Energy conservation requires that e cannot be zero.
This argument is independent of viscosity, and yet equation
(6) seems to imply that depends on n. The correct interpre-e
tation is that is indeed independent of n, and what equatione
(6) tells us is at which wavenumber k (or scale), the dissipation
process occurs. It should not be viewed as giving us the amount
of energy that must be dissipated (because we do not know
the spectrum in the high k region) since is the same as thee
energy input. The smaller the n, the smaller the scales at which
dissipation occurs: as , , and the product is con-n r 0 Q r `
stant. That is independent of n is well known in turbulence.e
The argument that implies is mathematically andn r 0 e r 0
physically incorrect.

7. FIFTH FALLACY: LOCAL EXPRESSION FOR e

We are not aware of any OV calculations which adopt equa-
tion (2e). The most widely used expression for is a local onee
(Gough 1976; Xiong, Cheng, & Deng 1997; Balmforth 1992).
It is obtained from equation (2e) by taking

­
21 21 1/2D (e) 5 2 we r l we r l K e, (7a)f

­z

where is a mixing length. Once used in equation (2e), it givesl
the well-known local expression

21 3/2e 5 l K . (7b)

Use of equation (7b) leads to divergent results, as discussed
recently (Canuto & Dubovikov 1997b).

8. CONCLUSIONS

The hope to quantify the OV with a single expression, a
criterion so to speak, has remained regrettably unfulfilled.
Equation (3b) is nothing more than a mathematical rewriting
of two of the six differential equations (2a)–(2f). It contains
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no new physics and, thus, no more information than the original
equations. To use equation (3b), one must know two ingredi-
ents, and , which require the solutions of the remaininge(r) b(r)
equations; thus, equation (3b) offers no operational or practical
advantages. One can artificially disentangle equation (3b) from
the rest of the equations by taking and . Thesee 5 0 b 5 0
assumptions are flawed since is in violation of energye 5 0
conservation. At the more general level, since equation (3b)
with and is a relation in which turbulence hase 5 0 b 5 0
disappeared, one may wonder how can it be used to infer a

turbulence property like the OV? There seem to be no alter-
natives or shortcuts to solving equations (2a)–(2f). New results
(Antia & Basu 1997, private communication) indicate that in
the case of the Sun, equations (2a)–(2f) predict an OV smaller
than the upper limit of set by helioseismology. The hope1 Hp20

is that the same model will now be applied to the case of
massive stars.

The author would like to thank R. B. Stothers and F. Kupka
for their advice.
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